An Analog Neural Computer with Modular Architecture for Real-Time Dynamic Computations
نویسندگان
چکیده
The paper describes a multichip analog parallel neural network whose architecture, neuron characteristics, synaptic connections, and time constants are modifiable. The system has several important features, such as time constants for time-domain computations, interchangeable chips allowing a modifiable gross architecture, and expandability to any arbitrary size. Such an approach allows the exploration of different network architectures for a wide range of applications, in particular dynamic real-world computations. Four different modules (neuron, synapse, time constant, and switch units) have been designed and fabricated in a 2μm CMOS technology. About 100 of these modules have been assembled in a fully functional prototype neural computer. An integrated software package for setting the network configuration and characteristics, and monitoring the neuron outputs has been developed as well. The performance of the individual modules as well as the overall system response for several applications have been tested successfully. Results of a network for real-time decomposition of acoustical patterns will be discussed.
منابع مشابه
Implementation of Low-Cost Architecture for Control an Active Front End Rectifier
In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynam...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملReal Time Dynamic Simulation of Power System Using Multiple Microcomputers
Recent developments in the design and manufacture of microcomputers together with improved simulation techniques make it possible to achieve the speed and accuracy required for the dynamic simulation of power systems in real time. This paper presents some experimental results and outlines new ideas on hardware architecture, mathematical algorithms and software development for this purpose. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016